660/1 Math. 22-23 / 62110

B.Sc. Semester-VI Examination, 2022-23 MATHEMATICS [Programme]

Course ID: 62110 Course Code: SP/MTH/604/SEC-4

Course Title: Numerical Analysis with Practical (Theory)

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

1. Answer any **five** of the following questions:

$$1 \times 5 = 5$$

- a) If x = 3.21 and y = 5.32 have absolute errors $\Delta x = 0.004$ and $\Delta y = 0.007$, find the relative error in x+y.
- b) Define complete pivoting and partial pivoting of Gaussian elimination method.
- c) Define transcendental equation with example.
- d) Write down the geometrical interpretation of trapezoidal rule.
- e) When Newton-Raphson method fails? Justify your answer.

- f) Write down the appropriate value of $\frac{6}{7}$ correct up to four significant figures and then find the percentage error in such approximation.
- g) Write down the condition of convergence and rate of convergence of Fixed Point Iteration method.
- h) Given $\frac{dy}{dx} = x^3 + y$, y(0) = 1, compute y(0.02) by Euler's method correct up to four decimal places, taking step length h = 0.01.
- 2. Answer any **two** of the following questions:

$$5 \times 2 = 10$$

- a) i) Describe Newton-Cotes numerical integration formula and deduce Simpson's 1/3 rule from it.
 - ii) If T_1 and T_2 denote the Trapezoidal approximation to $I = \int_a^b f(x) dx$ with one and two sub-interval respectively, show that $1 T_2 = \frac{(T_2 T_1)}{3}.$ 3+2

- b) i) If N is a function of different measurable quantities u, v, w, x, y and is given by $N = \frac{u^p v^q w^n}{x^s y^t}$. Find an upper limit to the relative error to the measure of N.
 - ii) Find a real root of the equation $x^3+2x-1=0$ by iteration method correct up to two places of decimal. 2+3
- c) Compute f'(1.16) and f''(1.16) from the following table:

x	1.11	1.12	1.13	1.14	1.15	1.16
f(x)	6.2321	6.2544	6.2769	6.2996	6.3225	6.3456

3. Answer any **one** of the following questions:

$$10 \times 1 = 10$$

a) i) Find f(1.5) using Newton's Forward formula from the following table:

x :	1	2	3	4	5	6	7	8
f(x):	1	8	27	64	125	216	343	512

ii) Prove that $E.\Delta = \Delta.E$, all symbols have their usual meaning.

- iii) Calculate $\int_{0}^{1} \frac{x}{1+x} dx$ correct up to three significant figures, taking six intervals by Simpson's one-third rule. 5+2+3
- b) i) Solve the following system of equations by Gauss Elimination method:

$$2x_1 + 3x_2 + x_3 = 9$$

$$x_1 + 2x_2 + 3x_3 = 6$$

$$3x_1 + x_2 + 2x_3 = 8$$

- ii) Describe convergence of Regula-Falsi method.
- iii) Given the following table, find f(x) assuming it to be a polynomial of three degree in x. 5+2+3

x :	0	1	2	3
f(x):	1	2	11	34
